If 1176 = 2a × 3b × 7c,

Question:

If $1176=2 \times 3 \times 7$, find the values of $a, b$ and $c$.

 

Solution:

Hence compute the value of $2^{a} \times 3^{b} \times 7^{-c}$ as a fraction

$1176=2^{a} \times 3^{b} \times 7^{c}$

$2^{3} \times 3^{1} \times 7^{2}=2^{a} \times 3^{b} \times 7^{c}$

$a=3, b=1, c=2$

We have to find the value of $2^{a} \times 3^{b} \times 7^{-c}$

$2^{a} \times 3^{b} \times 7^{-c}=2^{3} \times 3^{1} \times 7^{-2}$

$=\frac{2 \times 2 \times 2 \times 3}{7 \times 7}$

$=24 / 49$

 

Leave a comment