Question:
If (1 + i)z = (1 – i) z̅, then show that z = i z̅.
Solution:
According to the question,
We have,
$(1+i) z=(1-i) \bar{z}$
$\Rightarrow \mathrm{z}=\frac{1-\mathrm{i}}{1+\mathrm{i}} \overline{\mathrm{z}}$
Rationalizing the denominator, We get,
$=\frac{(1-i)(1-i)}{(1+i)(1-i)} \bar{z}$
$=\frac{(1-i)^{2}}{\left(1-i^{2}\right)} \bar{z}$
$=\frac{1-2 \mathrm{i}+\mathrm{i}^{2}}{1+1} \overline{\mathrm{z}}$
$=\frac{1-2 \mathrm{i}-1}{2} \overline{\mathrm{z}}$
= -iz̅
Hence proved.