Question:
If 1 – i is a root of the equation x2 + ax + b = 0, where a, b ∈ R, then the values of a and b are ____________.
Solution:
for equation $x^{2}+a x+b=0$ one root is $1-i$.
Let us suppose other root is $p+i q$ when $p, q \in \mathbb{R}$
Sum of roots of quadratic equations is $=-a$
i.e. $(1-i)+(p+i q)=-a$
i. e. $1+p+i(-1+q)=-a$
since $a$ is real (given)
$\Rightarrow-1+q=0$ (i. e. imaginary part is zero)
i.e. $q=1$
also product of roots $=b$
$\Rightarrow(1-i)(p+i q)=b$
i.e. $p-i^{2} q-i p+i q=b$
i. e. $p+q+i(q-p)=b$
Since $b$ is also real $\Rightarrow p-q=0$
$\Rightarrow p=q=1$
Hence $a=1+p=-2, b=p+q=1+1=2$