If $(1+i)(1+2 i)(1+3 i) \ldots(1+n i)=a+i b$, then $2.5 .10 .17 \ldots \ldots . .\left(1+n^{2}\right)=$
(a) a − ib
(b) a2 − b2
(c) a2 + b2
(d) none of these
(c) $a^{2}+b^{2}$
(1 + i)(1 + 2i)(1 + 3i) ......(1 + ni) = a + ib
Taking modulus on both the sides, we get,
$|(1+i)(1+2 i)(1+3 i) \ldots \ldots(1+n i)|=a+i b$
$|(1+i)(1+2 i)(1+3 i) \ldots \ldots(1+n i)|$ can be wriiten as $|(1+i)||(1+2 i)||(1+3 i)| \ldots|(1+n i)|$
$\therefore \sqrt{1^{2}+1^{2}} \times \sqrt{1^{2}+2^{2}} \times \sqrt{1^{2}+3^{2}} \ldots \times \sqrt{1^{2}+n^{2}}=\sqrt{a^{2}+b^{2}}$
$\Rightarrow \sqrt{2} \times \sqrt{5} \times \sqrt{10} \ldots \times \sqrt{1+n^{2}}=\sqrt{a^{2}+b^{2}}$
Squaring on both the sides, we get:
$2 \times 5 \times 10 \ldots \times\left(1+n^{2}\right)=a^{2}+b^{2}$