Question:
If 0 < arg (z) < π, then arg (z) – arg (–z) = ____________.
Solution:
For 0 < arg z < π
Let z = r(cosθ, i sinθ)
i.e arg z = θ
Then –z = – r(cosθ + i sinθ)
$=-r(+\cos \theta+i(+\sin \theta))$
$=(-1) r e^{i \theta}$
$=e^{i \pi} r e^{i \theta}$
$=r e^{i(\theta+\pi)}$
i.e arg (–z) = θ + π
⇒ arg z – arg(–z) = θ – θ – π
= – π