Identify the polynomials in the following:
1. $f(x)=4 x^{3}-x^{2}-3 x+7$
2. b. $g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1$
3. $p(x)=\frac{2}{3} x^{2}+\frac{7}{4} x+9$
4. $q(x)=2 x^{2}-3 x+4 / x+2$
5. $h(x)=x^{4}-x^{3 / 2}+x-1$
6. $f(x)=2+3 x+4 x$
Given
1. $f(x)=4 x^{3}-x^{2}-3 x+7$ it is a polynomial
2. b. $g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1$ it is not a polynomial since the exponent of $\sqrt{x}$ is a negative integer
3. $p(x)=\frac{2}{3} x^{2}+\frac{7}{4} x+9$ it is a polynomial as it has positive integers as exponents
4. $q(x)=2 x^{2}-3 x+4 / x+2$ it is not a polynomial since the exponent of $4 / x$ is a negative integer
5. $h(x)=x^{4}-x^{3 / 2}+x-1$ it is not a polynomial since the exponent of $-x^{3 / 2}$ is a negative integer
6. $f(x)=2+3 x+4 x$ it is not a polynomial since the exponent of $3 / x$ is a negative integer