Identify the following as rational or irrational numbers. Give the decimal representation of rational numbers:
(i) $(\sqrt{4})$
(ii) $3 \sqrt{18}$
(iii) $\sqrt{1.44}$
(iv) $\sqrt{\frac{9}{27}}$
(v) $-\sqrt{64}$
(vi) $\sqrt{100}$
(i) Given number is $x=\sqrt{4}$
$x=2$, which is a rational number
(ii) Given number is $3 \sqrt{18}$
$\Rightarrow 3 \sqrt{18}=3 \sqrt{3 \times 3 \times 2}$
$\Rightarrow 3 \sqrt{18}=3 \times 3 \sqrt{2}$
$\Rightarrow 3 \sqrt{18}=3 \times 3 \sqrt{2}$
$\Rightarrow 3 \sqrt{18}=18 \sqrt{2}$
$3 \sqrt{18}=3 \sqrt{3 \times 3 \times 2}=3 \times 3 \sqrt{2}=9 \sqrt{2}$
So it is an irrational number
(iii) Given number is $\sqrt{1.44}$
Now we have to check whether it is rational or irrational
$\Rightarrow \sqrt{1.44}=\sqrt{\frac{144}{100}}$
$\Rightarrow \sqrt{1.44}=\frac{\sqrt{144}}{\sqrt{100}}$
$\Rightarrow \sqrt{1.44}=\frac{12}{10}$
$\Rightarrow \sqrt{1.44}=\frac{6}{5}$
$\Rightarrow \sqrt{1.44}=1.2$
So it is a rational
(iv) Given that $\sqrt{\frac{9}{27}}$
Now we have to check whether it is rational or irrational
$\Rightarrow \sqrt{\frac{9}{27}}=\frac{\sqrt{9}}{\sqrt{27}}$
$\Rightarrow \sqrt{\frac{9}{27}}=\frac{3}{\sqrt{3 \times 3 \times 3}}$
$\Rightarrow \sqrt{\frac{9}{27}}=\frac{3}{3 \sqrt{3}}$
$\Rightarrow \sqrt{\frac{9}{27}}=\frac{1}{\sqrt{3}}$
So it is an irrational number
(v) Given that $-\sqrt{64}$
Now we have to check whether it is rational or irrational
Since, $-\sqrt{64}=-8$
So it is a rational number
(vi) Given that $\sqrt{100}$
Now we have to check whether it is rational or irrational
Since, $\sqrt{100}=10$
So it is rational number