(i) If $\tan A=\frac{5}{6}$ and $\tan B=\frac{1}{11}$, prove that $A+B=\frac{\pi}{4}$.
(ii) If $\tan A=\frac{m}{m-1}$ and $\tan B=\frac{1}{2 m-1}$, then prove that $A-B=\frac{\pi}{4}$.
(i) We have:
$\tan A=\frac{5}{6}$ and $\tan B=\frac{1}{11}$
Therefore, $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\Rightarrow \tan (A+B)=\frac{\frac{5}{6}+\frac{1}{11}}{1-\frac{5}{6} \times \frac{1}{11}}$
$\Rightarrow \tan (A+B)=\frac{\frac{61}{66}}{\frac{61}{66}}$
$\Rightarrow \tan (A+B)=1$
$\Rightarrow \tan (A+B)=\tan \left(\frac{\pi}{4}\right)$
Therefore, $A+B=\frac{\pi}{4}$.
Hence proved.
(ii) We know that
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
$=\frac{\frac{m}{m-1}-\frac{1}{2 m-1}}{1+\frac{m}{(m-1)(2 m-1)}}$
$=\frac{2 m^{2}-m-m+1}{2 m^{2}-m-2 m+1+m}$
$=\frac{2 m^{2}-2 m+1}{2 m^{2}-2 m+1}$
$=1$
$\Rightarrow A-B=\tan ^{-1}(1)$
$\Rightarrow A-B=\frac{\pi}{4}$