(i) For two matrices $A$ and $B, A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 1 & 0\end{array}\right], B=\left[\begin{array}{rr}1 & -1 \\ 0 & 2 \\ 5 & 0\end{array}\right]$ verify that
$(A B)^{T}=B^{T} A^{T}$
(ii) For the matrices $A$ and $B$, verify that $(A B)^{T}=B^{T} A^{T}$, where
$A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$
(i)
Given : $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 1 & 0\end{array}\right]$
$A^{T}=\left[\begin{array}{cc}2 & 4 \\ 1 & 1 \\ 3 & 0\end{array}\right]$
$B=\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 5 & 0\end{array}\right]$
$B^{T}=\left[\begin{array}{ccc}1 & 0 & 5 \\ -1 & 2 & 0\end{array}\right]$
Now,
$A B=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 1 & 0\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 5 & 0\end{array}\right]$
$\Rightarrow A B=\left[\begin{array}{cc}2+0+15 & -2+2+0 \\ 4+0+0 & -4+2+0\end{array}\right]$
$\Rightarrow A B=\left[\begin{array}{cc}17 & 0 \\ 4 & -2\end{array}\right]$
$\Rightarrow(A B)^{T}=\left[\begin{array}{cc}17 & 4 \\ 0 & -2\end{array}\right]$ ...(1)
$B^{T} A^{T}=\left[\begin{array}{ccc}1 & 0 & 5 \\ -1 & 2 & 0\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 1 & 1 \\ 3 & 0\end{array}\right]$
$\Rightarrow B^{T} A^{T}=\left[\begin{array}{cc}2+0+15 & 4+0+0 \\ -2+2+0 & -4+2+0\end{array}\right]$
$\Rightarrow B^{T} A^{T}=\left[\begin{array}{cc}17 & 4 \\ 0 & -2\end{array}\right] \quad \ldots(2)$ $\ldots(2)$
(ii)
Given : $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
$A^{T}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$B=\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$
$B^{T}=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$
Now,
$A B=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$
$\Rightarrow A B=\left[\begin{array}{ll}1+6 & 4+15 \\ 2+8 & 8+20\end{array}\right]$
$\Rightarrow A B=\left[\begin{array}{cc}7 & 19 \\ 10 & 28\end{array}\right]$
$\Rightarrow(A B)^{T}=\left[\begin{array}{cc}7 & 10 \\ 19 & 28\end{array}\right]$ ...(1)
Also,
$B^{T} A^{T}=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\Rightarrow B^{T} A^{T}=\left[\begin{array}{cc}1+6 & 2+8 \\ 4+15 & 8+20\end{array}\right]$
$\Rightarrow B^{T} A^{T}=\left[\begin{array}{cc}7 & 10 \\ 19 & 28\end{array}\right]$
$\therefore(A B)^{T}=B^{T} A^{T}$ [From eqs. (1) and (2)]