Find the sum to $n$ terms of the series $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$
The given series is $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$
$n^{\text {th }}$ term, $a_{n}=n(n+1)(n+2)$
$=\left(n^{2}+n\right)(n+2)$
$=n^{3}+3 n^{2}+2 n$
$\therefore S_{n}=\sum_{k=1}^{n} a_{k}$
$=\sum_{k=1}^{n} k^{3}+3 \sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k$
$=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{3 n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}$
$=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{2}+n(n+1)$
$=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+2 n+1+2\right]$
$=\frac{n(n+1)}{2}\left[\frac{n^{2}+n+4 n+6}{2}\right]$
$=\frac{n(n+1)}{4}\left(n^{2}+5 n+6\right)$
$=\frac{n(n+1)}{4}\left(n^{2}+2 n+3 n+6\right)$
$=\frac{n(n+1)[n(n+2)+3(n+2)]}{4}$
$=\frac{n(n+1)(n+2)(n+3)}{4}$