How should we choose two numbers, each greater than or equal to -2 whose sum______________ so that the sum of the first and the cube of the second is minimum?
Let the two numbers be $x$ and $y$. Then,
$x, y>-2$ and $x+y=\frac{1}{2}$ .....(1)
Now,
$z=x+y^{3}$
$\Rightarrow z=x+\left(\frac{1}{2}-x\right)^{3}$ [From eq. (1)]
$\Rightarrow \frac{d z}{d x}=1+3\left(\frac{1}{2}-x\right)^{2}$
For maximum or minimum values of $z$, we must have
$\frac{d z}{d x}=0$
$\Rightarrow 1+3\left(\frac{1}{2}-x\right)^{2}=0$
$\Rightarrow\left(\frac{1}{2}-x\right)^{2}=\frac{1}{3}$
$\Rightarrow\left(\frac{1}{2}-x\right)=\pm \frac{1}{\sqrt{3}}$
$\Rightarrow x=\frac{1}{2} \pm \frac{1}{\sqrt{3}}$
$\frac{d^{2} z}{d x^{2}}=6\left(\frac{1}{2}-x\right)$
$\Rightarrow \frac{d^{2} z}{d x^{2}}=3-6 x$
At $x=\frac{1}{2} \pm \frac{1}{\sqrt{3}}:$
$\frac{d^{2} z}{d x^{2}}=3-6\left(\frac{1}{2}+\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \frac{-6}{\sqrt{3}}<0$
Thus, $z$ is maximum when $x=\frac{1}{2}+\frac{1}{\sqrt{3}}$.
At $x=\frac{1}{2}-\frac{1}{\sqrt{3}}:$
$\frac{d^{2} z}{d x^{2}}=3-6\left(\frac{1}{2}-\frac{1}{\sqrt{3}}\right)$
$\Rightarrow \frac{6}{\sqrt{3}}>0$
Thus, $z$ is minimum when $x=\frac{1}{2}-\frac{1}{\sqrt{3}}$.
$x+y=\frac{1}{2}$
Substituting the value of $x$ in eq. (1), we get
$y=-\frac{1}{2}+\frac{1}{\sqrt{3}}+\frac{1}{2}$
$y=\frac{1}{\sqrt{3}}$
So, the required two numbers are $\left(\frac{1}{2}-\frac{1}{\sqrt{3}}\right)$ and $\frac{1}{\sqrt{3}}$.