Question:
How many terms of the AP 21, 18, 15, ... must be added to get the sum 0?
Solution:
The given AP is 21, 18, 15, ... .
Here, a = 21 and d = 18 − 21 = −3
Let the required number of terms be n. Then,
$S_{n}=0$
$\Rightarrow \frac{n}{2}[2 \times 21+(n-1) \times(-3)]=0 \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$\Rightarrow \frac{n}{2}(42-3 n+3)=0$
$\Rightarrow n(45-3 n)=0$
$\Rightarrow n=0$ or $45-3 n=0$
$\Rightarrow n=0$ or $n=15$
∴ n = 15 (Number of terms cannot be zero)
Hence, the required number of terms is 15.