Question.
How many terms of the AP : 9, 17, 25,.... must be taken to give a sum of 636?
How many terms of the AP : 9, 17, 25,.... must be taken to give a sum of 636?
Solution:
$a=9, d=8$
Let $S_{n}=636$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=636$
$\Rightarrow \frac{n}{2}\{2 \times 9+(n-1)(8)\}=636$
$\Rightarrow \frac{n}{2}\{18+8 n-8\}=636$
$\Rightarrow \frac{n}{2}\{8 n+10\}=636 \Rightarrow n(4 n+5)=636$
$\Rightarrow 4 n^{2}+5 n-636=0$
$\Rightarrow \mathrm{n}=\frac{-5 \pm \sqrt{25+10176}}{8}=\frac{-5 \pm \sqrt{10201}}{8}$
$=\frac{-5 \pm 101}{8}=-\frac{106}{8}$ or $\frac{96}{8}=-\frac{53}{4}$ or 12
We reject $\mathrm{n}=-\frac{53}{4} \Rightarrow \mathrm{n}=12$
Hence, 12 terms makes the sum.
$a=9, d=8$
Let $S_{n}=636$
$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=636$
$\Rightarrow \frac{n}{2}\{2 \times 9+(n-1)(8)\}=636$
$\Rightarrow \frac{n}{2}\{18+8 n-8\}=636$
$\Rightarrow \frac{n}{2}\{8 n+10\}=636 \Rightarrow n(4 n+5)=636$
$\Rightarrow 4 n^{2}+5 n-636=0$
$\Rightarrow \mathrm{n}=\frac{-5 \pm \sqrt{25+10176}}{8}=\frac{-5 \pm \sqrt{10201}}{8}$
$=\frac{-5 \pm 101}{8}=-\frac{106}{8}$ or $\frac{96}{8}=-\frac{53}{4}$ or 12
We reject $\mathrm{n}=-\frac{53}{4} \Rightarrow \mathrm{n}=12$
Hence, 12 terms makes the sum.