Question:
How many terms are there in the AP $18,15 \frac{1}{2}, 13, \ldots,-47 ?$
Solution:
The given $\mathrm{AP}$ is $18,15 \frac{1}{2}, 13, \ldots,-47$.
First term, a = 18
Common difference, $d=15 \frac{1}{2}-18=\frac{31}{2}-18=\frac{31-36}{2}=-\frac{5}{2}$
Suppose there are n terms in the given AP. Then,
$a_{n}=-47$
$\Rightarrow 18+(n-1) \times\left(-\frac{5}{2}\right)=-47 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-\frac{5}{2}(n-1)=-47-18=-65$
$\Rightarrow n-1=-65 \times\left(-\frac{2}{5}\right)=26$
$\Rightarrow n=26+1=27$
Hence, there are 27 terms in the given AP.