How many terms are there in the A.P.?
(i) $7,10,13, \ldots 43$.
(ii) $-1, \frac{5}{6}, \frac{2}{3}, \frac{1}{2}, \ldots \frac{10}{3}$.
(iii) $7,13,19, \ldots, 205$.
(iv) $18,15 \frac{1}{2}, 13, \ldots,-47$.
In the given problem, we are given an A.P.
We need to find the number of terms present in it
So here we will find the value of $n$ using the formula, $a_{n}=a+(n-1) d$
(i) Here, A.P is $7,10,13, \ldots .43$
The first term $(a)=7$
The last term $\left(a_{n}\right)=43$
Now,
Common difference $(d)=a_{1}-a$
$=10-7$
$=3$
Thus, using the above mentioned formula, we get,
$43=7+(n-1) 3$
$43-7=3 n-3$
$36+3=3 n$
$n=\frac{39}{3}$
$n=13$
Thus, $n=13$
Therefore, the number of terms present in the given A.P is 13
(ii) Here, A.P is $-1,-\frac{5}{6},-\frac{2}{3},-\frac{1}{2}, \ldots, \frac{10}{3}$
The first term $(a)=-1$
The last term $\left(a_{n}\right)=\frac{10}{3}$
Now,
Common difference $(d)=a_{1}-a$
$=-\frac{5}{6}-(-1)$
$=-\frac{5}{6}+1$
$=\frac{-5+6}{6}$
$=\frac{1}{6}$
Thus, using the above mentioned formula, we get,
$\frac{10}{3}=-1+(n-1) \frac{1}{6}$
$\frac{10}{3}+1=\frac{1}{6} n-\frac{1}{6}$
$\frac{13}{3}+\frac{1}{6}=\frac{1}{6} n$
Further solving for n, we get
$\frac{26+1}{6}=\frac{1}{6} n$
$n=\frac{27}{6}(6)$
$n=27$
Thus, $n=27$
Therefore, the number of terms present in the given A.P is 27
(iii) Here, A.P is $7,13,19, \ldots .205$
The first term $(a)=7$
The last term $\left(a_{n}\right)=205$
Now,
Common difference $(d)=a_{1}-a$
$=13-7$
$=6$
Thus, using the above mentioned formula, we get,
$205=7+(n-1) 6$
$205-7=6 n-6$
$198+6=6 n$
$n=\frac{204}{6}$
$n=34$
Thus, $n=34$
Therefore, the number of terms present in the given A.P is 34
(iv) Here, A.P is $18,15 \frac{1}{2}, 13, \ldots,-47$
The first term $(a)=18$
The last term $\left(a_{n}\right)=-47$
Now,
Common difference $(d)=a_{1}-a$
$=15 \frac{1}{2}-18$
$=\frac{31}{2}-18$
$=\frac{31-36}{2}$
$=-\frac{5}{2}$
Thus, using the above mentioned formula, we get,
$-47=18+(n-1)\left(-\frac{5}{2}\right)$
$-47-18=-\frac{5}{2} n+\frac{5}{2}$
$-65-\frac{5}{2}=-\frac{5}{2} n$
Further, solving for n, we get
$\frac{-130-5}{2}=-\frac{5}{2} n$
$-\frac{135}{2}(2)=-5 n$
$n=\frac{-135}{-5}$
$n=27$
Thus, $n=27$
Therefore, the number of terms present in the given A.P is 27 .