How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?
Length of the wooden block $=6 \mathrm{~m}$
$=6 \times 100 \mathrm{~cm} \quad(\because 1 \mathrm{~m}=100 \mathrm{~cm})$
$=600 \mathrm{~cm}$
Breadth of the block $=75 \mathrm{~cm}$
Height of the block $=45 \mathrm{~cm}$
Volume of block $=$ length $\times$ breadth $\times$ height
$=600 \times 75 \times 45
$=2025000 \mathrm{~cm}^{3}$
Again, it is given that the length of a plank $=3 \mathrm{~m}$
$=3 \times 100 \mathrm{~cm} \quad(\because 1 \mathrm{~m}=100 \mathrm{~cm})$
$=300 \mathrm{~cm}$
Breadth $=15 \mathrm{~cm}$,
Height $=5 \mathrm{~cm}$
Volume of the plank $=$ leng th $\times$ breadth $\times$ height
$=300 \times 15 \times 5=22500 \mathrm{~cm}^{3}$
$\therefore$ The number of such planks $=\frac{\text { volume of the wooden block }}{\text { voume of a plank }}=\frac{2025000 \mathrm{~cm}^{3}}{22500 \mathrm{~cm}^{3}}=90$