Question.
How many litres of milk can a hemispherical bowl of diameter $10.5 \mathrm{~cm}$ hold? $\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
How many litres of milk can a hemispherical bowl of diameter $10.5 \mathrm{~cm}$ hold? $\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
Solution:
Radius $(r)$ of hemispherical bowl $=\left(\frac{10.5}{2}\right) \mathrm{cm}=5.25 \mathrm{~cm}$
Volume of hemispherical bowl $=\frac{2}{3} \pi r^{3}$
$=\left[\frac{2}{3} \times \frac{22}{7} \times(5.25)^{3}\right] \mathrm{cm}^{3}$
$=303.1875 \mathrm{~cm}^{3}$
Capacity of the bowl $=\left(\frac{303.1875}{1000}\right)$ litre
$=0.3031875$ litre $=0.303$ litre (approximately)
Therefore, the volume of the hemispherical bowl is $0.303$ litre.
Radius $(r)$ of hemispherical bowl $=\left(\frac{10.5}{2}\right) \mathrm{cm}=5.25 \mathrm{~cm}$
Volume of hemispherical bowl $=\frac{2}{3} \pi r^{3}$
$=\left[\frac{2}{3} \times \frac{22}{7} \times(5.25)^{3}\right] \mathrm{cm}^{3}$
$=303.1875 \mathrm{~cm}^{3}$
Capacity of the bowl $=\left(\frac{303.1875}{1000}\right)$ litre
$=0.3031875$ litre $=0.303$ litre (approximately)
Therefore, the volume of the hemispherical bowl is $0.303$ litre.