Question.
How many $176 \Omega$ resistors (in parallel) are required to carry $5 \mathrm{~A}$ in $220 \mathrm{~V}$ line?
How many $176 \Omega$ resistors (in parallel) are required to carry $5 \mathrm{~A}$ in $220 \mathrm{~V}$ line?
solution:
Here, $I=5 \mathrm{~A}, \mathrm{~V}=220 \mathrm{~V} .$
Resistance required in the circuit,
$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{220 \mathrm{~V}}{5 \mathrm{~A}}=44 \Omega$
Resistance of each resistor, $\mathrm{r}=176 \Omega$
If $\mathrm{n}$ resistors, each of resistance $\mathrm{r}$, are connected in parallel to get the required resistance $\mathrm{R}$, then
$\mathrm{R}=\frac{\mathrm{r}}{\mathrm{n}}$ or $44=\frac{176}{\mathrm{n}}$ or $\mathrm{n}=\frac{176}{44}=4$
Here, $I=5 \mathrm{~A}, \mathrm{~V}=220 \mathrm{~V} .$
Resistance required in the circuit,
$\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{220 \mathrm{~V}}{5 \mathrm{~A}}=44 \Omega$
Resistance of each resistor, $\mathrm{r}=176 \Omega$
If $\mathrm{n}$ resistors, each of resistance $\mathrm{r}$, are connected in parallel to get the required resistance $\mathrm{R}$, then
$\mathrm{R}=\frac{\mathrm{r}}{\mathrm{n}}$ or $44=\frac{176}{\mathrm{n}}$ or $\mathrm{n}=\frac{176}{44}=4$