Height of a solid cylinder is 10 cm and diameter 8 cm.

Question:

Height of a solid cylinder is 10 cm and diameter 8 cm. Two equal conical hole have been made from its both ends. If the diameter oaf the holes is 6 cm and height 4 cm, find

(i) volume of the cylinder,

(ii) volume of one conical hole,

(iii) volume of the remaining solid.

Solution:

Height = 10 cm.

Radius

$=\frac{8}{2}$

$=4 \mathrm{~cm} .$

(i) Volume of cylinder

$=\pi r^{2} h$

$=\pi \times(4)^{2} \times 10$

$=160 \pi \mathrm{cm}^{3}$

(ii) Volume of conical hole diameter of

cone = 6 cm.

radius $=\frac{6}{2}$

$=3 \mathrm{~cm}$

height $=4 \mathrm{~cm}$.

volume $=\frac{1}{3} \pi(7)^{2} h$

$=\frac{1}{3} \pi \cdot 9 \cdot 4$

$=12 \pi \mathrm{cm}^{3}$

(iii) Volume of remaining solid

$=160 \pi-2 \times(12 \pi)$

 

$=160 \pi-24 \pi$

$=136 \pi \mathrm{cm}^{3}$

Leave a comment