Question.
Gravitational force on the surface of the Moon is only $\frac{1}{6}$ as strong as gravitational force on the earth. What is the weight in newton of a $10 \mathrm{~kg}$ object on the Moon and on the earth ?
Gravitational force on the surface of the Moon is only $\frac{1}{6}$ as strong as gravitational force on the earth. What is the weight in newton of a $10 \mathrm{~kg}$ object on the Moon and on the earth ?
Solution:
Mass of object $(\mathrm{m})=10 \mathrm{~kg}$
Acceleration due to gravity on earth
(g) $=9.81 \mathrm{~ms}^{-2}$.
Acceleration due to gravity on Moon
$\left(g_{\mathrm{m}}\right)=\frac{9.81}{6} \mathrm{~ms}^{-2}$
Weight of the object on the earth
$=m g=10 \times 9.81=98.1 \mathrm{~N}$
Weight of the object on the Moon
$=\mathrm{mg}_{\mathrm{m}}=10 \times \frac{9.81}{6}=16.35 \mathrm{~N}$
Mass of object $(\mathrm{m})=10 \mathrm{~kg}$
Acceleration due to gravity on earth
(g) $=9.81 \mathrm{~ms}^{-2}$.
Acceleration due to gravity on Moon
$\left(g_{\mathrm{m}}\right)=\frac{9.81}{6} \mathrm{~ms}^{-2}$
Weight of the object on the earth
$=m g=10 \times 9.81=98.1 \mathrm{~N}$
Weight of the object on the Moon
$=\mathrm{mg}_{\mathrm{m}}=10 \times \frac{9.81}{6}=16.35 \mathrm{~N}$