Given the sum of the perimeters of a square and a circle, show that the sum of there areas is least when one side of the square is equal to diameter of the circle.
Let the length of a side of the square and radius of the circle be $x$ and $r$, respectively. It is given that the sum of the perimeters of square and circle is constant.
$\Rightarrow 4 x+2 \pi r=K$ (Where $K$ is some constant)
$\Rightarrow x=\frac{(K-2 \pi r)}{4}$ .....(1)
Now,
$A=x^{2}+\pi r^{2}$
$\Rightarrow A=\frac{(K-2 \pi r)^{2}}{16}+\pi r^{2}$ [From eq. (1) ]
$\Rightarrow \frac{(K-2 \pi r)-\pi}{4}+2 \pi r=0$
$\Rightarrow \frac{(K-2 \pi r) \pi}{4}=2 \pi r$
$\Rightarrow K-2 \pi r=8 r$ .....(2)
$\frac{d^{2} A}{d x^{2}}=\frac{\pi^{2}}{2}+2 \pi>0$
From eqs. (1) and (2), we get
$x=\frac{(K-2 \pi r)}{4}$
$\Rightarrow x=\frac{8 r}{4}$
$\Rightarrow x=2 r$
$\therefore$ Side of the square $=$ Diameter of the circle