Question:
Given the masses of various atomic particles $m_{p}=1.0072$
$\mathrm{u}, \mathrm{m}_{\mathrm{n}}=1.0087 \mathrm{u}, \mathrm{m}_{\mathrm{e}}=0.000548 \mathrm{u}, \mathrm{m}_{v}^{-}=0, \mathrm{~m}_{\mathrm{d}}=2.0141 \mathrm{u}$,
where $\mathrm{p} \equiv$ proton, $\mathrm{n} \equiv$ neutron, $\mathrm{e} \equiv$ electron,
$\bar{v} \equiv$ antineutrino and $\mathrm{d} \equiv$ deuteron. Which of the following
process is allowed by momentum and energy conservation?
Correct Option: , 3
Solution:
(3) For the momentum and energy conservation, mass defect $(\Delta m)$ should be positive. Since some energy is lost in every process.
$\left(m_{p}+m_{n}\right)>m_{d}$