Question:
Given the function $f(x)=\frac{1}{x+2}$. Find the points of discontinuity of the function $f(f(x))$.
Solution:
$f[f(x)]=\frac{1}{\frac{1}{x+2}+2}=\frac{x+2}{2 x+5}$
So, $f[f(x)]$ is not defined at $x+2=0$ and $2 x+5=0$
If $x+2=$, then $x=-2$
If $2 x+5=0$, then $x=-\frac{5}{2}$
Hence, the function is discontinuous at $x=-\frac{5}{2}$ and $-2$