Given that the slope of the tangent to a curve

Question:

Given that the slope of the tangent to a curve

$\mathrm{y}=\mathrm{y}(\mathrm{x})$ at any point $(\mathrm{x}, \mathrm{y})$ is $\frac{2 \mathrm{y}}{\mathrm{x}^{2}}$. If the curve

passes through the centre of the circle $x^{2}+y^{2}-2 x-2 y=0$, then its equation is :

  1. $x \log _{\mathrm{e}}|\mathrm{y}|=2(\mathrm{x}-1)$

  2. $x \log _{e}|y|=x-1$

  3. $x^{2} \log _{e}|y|=-2(x-1)$

  4. $x \log _{e}|y|=-2(x-1)$


Correct Option: 1

Solution:

given $\frac{d y}{d x}=\frac{2 y}{x^{2}}$

$\Rightarrow \int \frac{d y}{2 y}=\int \frac{d x}{x^{2}}$

$\Rightarrow \frac{1}{2} \ell \mathrm{ny}=-\frac{1}{\mathrm{x}}+\mathrm{c}$

passes through centre $(1,1)$

$\Rightarrow \mathrm{c}=1$

$\Rightarrow \mathrm{x} \ell \mathrm{ny}=2(\mathrm{x}-1)$

Leave a comment