Given that

Question:

Given that $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors $\vec{a}$ and $\vec{b} ?$

Solution:

$\vec{a} \cdot \vec{b}=0$

Then,

(i) Either $|\vec{a}|=0$ or $|\vec{b}|=0$, or $\vec{a} \perp \vec{b}$ (in case $\vec{a}$ and $\vec{b}$ are non-zero)

$\vec{a} \times \vec{b}=0$

(ii) Either $|\vec{a}|=0$ or $|\vec{b}|=0$, or $\vec{a} \| \vec{b}$ (in case $\vec{a}$ and $\vec{b}$ are non-zero)

But, $\vec{a}$ and $\vec{b}$ cannot be perpendicular and parallel simultaneously.

Hence, $|\vec{a}|=0$ or $|\vec{b}|=0$

Leave a comment