Question:
Given an example of three sets $A, B, C$ such that $A \cap C \neq \phi, B \cap C \neq \varnothing, A \cap C$
$\neq \phi$, and $A \cap B \cap C=\phi$
Solution:
Let A = {1, 2}
$B=\{2,3\}$
$C=\{1,3,4\}$
$A^{\cap} B=\{2\}$
$A^{\cap} C=\{1\}$
$B^{\cap} C=\{3\}$
$\mathrm{A}^{\cap} \mathrm{B} \cap \mathrm{C}=\{2\} \cap\{1,3,4\}=\varnothing$
So the three sets are valid and satisfy the given conditions