Given an example of three sets A, B, C such that

Question:

Given an example of three sets $A, B, C$ such that $A \cap C \neq \phi, B \cap C \neq \varnothing, A \cap C$

$\neq \phi$, and $A \cap B \cap C=\phi$

 

Solution:

Let A = {1, 2}

$B=\{2,3\}$

$C=\{1,3,4\}$

$A^{\cap} B=\{2\}$

$A^{\cap} C=\{1\}$

$B^{\cap} C=\{3\}$

$\mathrm{A}^{\cap} \mathrm{B} \cap \mathrm{C}=\{2\} \cap\{1,3,4\}=\varnothing$

So the three sets are valid and satisfy the given conditions

Leave a comment