Question:
Given a G.P. with $a=729$ and $7^{\text {th }}$ term 64 , determine $S_{7}$.
Solution:
$a=729$
$a_{7}=64$
Let $r$ be the common ratio of the G.P.
It is known that, $a_{n}=a r^{n-1}$
$a_{7}=a r^{7-1}=(729) r^{6}$
$\Rightarrow 64=729 r^{6}$
$\Rightarrow r^{6}=\frac{64}{729}$
$\Rightarrow r^{6}=\left(\frac{2}{3}\right)^{6}$
$\Rightarrow r=\frac{2}{3}$
Also, it is known that, $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore S_{7}=\frac{729\left[1-\left(\frac{2}{3}\right)^{7}\right]}{1-\frac{2}{3}}$
$=3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right]$
$=(3)^{7}\left[\frac{(3)^{7}-(2)^{7}}{(3)^{7}}\right]$
$=(3)^{7}-(2)^{7}$
$=2187-128$
$=2059$