Question:
Given $4725=3 \times 5 \times 7$, find
(i) The integral values of a, b and c
(ii) The value of $2^{-a} \times 3^{b} \times 7^{c}$
Solution:
(i) Taking out the LCM of 4725, we get
$3^{3} \times 5^{2} \times 7^{1}=3^{a} \times 5^{b} \times 7^{c}$
By comparing, we get
$a=3, b=2$ and $c=1$
(ii) The value of $2^{-a} \times 3^{b} \times 7^{c}$
Sol:
$2^{-a} \times 3^{b} \times 7^{c}=2^{-3} \times 3^{2} \times 7^{1}$
$2^{-3} \times 3^{2} \times 7^{1}=1 / 8 \times 9 \times 7$
$63 / 8$