From the top of a tower h m high, angles of depression of two objects, which are in line with the foot of the tower are a and β (β > a). Find the distance
between the two objects.
Let the distance between two objects is x m,
and CD = y m.
Given that, ∠BAX = α = ∠ABD, [alternate angle]
∠CAY = p = ∠ACD [alternate angle]
Now, in $\triangle A C D$,
$\tan \beta=\frac{A D}{C D}=\frac{h}{y}$
$\Rightarrow$ $y=\frac{h}{\tan \beta}$ .....(i)
and in $\triangle A B D$,
$\tan \alpha=\frac{A D}{B D} \quad \Rightarrow=\frac{A D}{B C+C D}$
$\Rightarrow$ $\tan \alpha=\frac{h}{x+y} \Rightarrow x+y=\frac{h}{\tan \alpha}$
$\Rightarrow$ $y=\frac{h}{\tan \alpha}-x$......(ii)
From Eqs. (i) and (ii),
$\frac{h}{\tan \beta}=\frac{h}{\tan \alpha}-x$
$\therefore$ $x=\frac{h}{\tan \alpha}-\frac{h}{\tan \beta}$
$=h\left(\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}\right)=h(\cot \alpha-\cot \beta)$ $\left[\because \cot \theta=\frac{1}{\tan \theta}\right]$'
which is the required distance between the two objects.
Hence proved.