From the top of a building AB, 60 m high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60°, respectively.
From the top of a building AB, 60 m high, the angles of depression of the top and bottom of a vertical lamp post CD are observed to be 30° and 60°, respectively.
Find
(i) the horizontal distance between AB and CD,
(ii) the height of the lamp post,
(iii) the difference between the heights of the building and the lamp post.
We have,
$\mathrm{AB}=60 \mathrm{~m}, \angle \mathrm{ACE}=30^{\circ}$ and $\angle \mathrm{ADB}=60^{\circ}$
Let $\mathrm{BD}=\mathrm{CE}=x$ and $\mathrm{CD}=\mathrm{BE}=y$
$\Rightarrow \mathrm{AE}=\mathrm{AB}-\mathrm{BE}=60-y$
In $\Delta \mathrm{ACE}$,
$\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{CE}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{60-y}{x}$
$\Rightarrow x=60 \sqrt{3}-y \sqrt{3} \quad \ldots$ (i)
Also, in $\triangle \mathrm{ABD}$,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \sqrt{3}=\frac{60}{x}$
$\Rightarrow x=\frac{60}{\sqrt{3}}$
$\Rightarrow x=\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow x=\frac{60 \sqrt{3}}{3}$
$\Rightarrow x=20 \sqrt{3}$
Substituting $x=20 \sqrt{3}$ in (i), we get
$20 \sqrt{3}=60 \sqrt{3}-y \sqrt{3}$
$\Rightarrow y \sqrt{3}=60 \sqrt{3}-20 \sqrt{3}$
$\Rightarrow y \sqrt{3}=40 \sqrt{3}$
$\Rightarrow y=\frac{40 \sqrt{3}}{\sqrt{3}}$
$\Rightarrow y=40 \mathrm{~m}$
(i) the horizontal distance between $\mathrm{AB}$ and $\mathrm{CD}=\mathrm{BD}=x$
$=20 \sqrt{3}$
$=20 \times 1.732$
$=34.64 \mathrm{~m}$
(ii) the height of the lamp post $=\mathrm{CD}=y=40 \mathrm{~m}$
(iii) the difference between the heights of the building and the lamp post $=\mathrm{AB}-\mathrm{CD}=60-40=20 \mathrm{~m}$