For which value(s) of λ, do the pair of linear equations λx + y =λ2 and x + λy = 1 have
(i) no solution?
(ii) infinitely many solutions?
(iii) a unique solution?
The given pair of linear equations is
λx + y = λ2 and x + λy = 1
a1 = λ, b1= 1, c1 = – λ2
a2 =1, b2=λ c2=-1
(i) For no solution,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
$\Rightarrow$ $\frac{\lambda}{1}=\frac{1}{\lambda} \neq \frac{-\lambda^{2}}{-1}$
$\Rightarrow \quad \lambda^{2}-1=0$
$\Rightarrow \quad(\lambda-1)(\lambda+1)=0$
$\Rightarrow \quad \lambda=1,-1$
Here, we take only $\lambda=-1$ because at $\lambda=1$ the system of linear equations has infinitely many solutions.
(ii) For infinitely many solutions,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\Rightarrow \quad \frac{\lambda}{1}=\frac{1}{\lambda}=\frac{\lambda^{2}}{1}$
$\Rightarrow \quad \frac{\lambda}{1}=\frac{\lambda^{2}}{1}$
$\Rightarrow \quad \lambda(\lambda-1)=0$
When $\lambda \neq 0$, then $\lambda=1$
(iii) For a unique solution.
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow \frac{\lambda}{1} \neq \frac{1}{\lambda}$
$\Rightarrow \quad \lambda^{2} \neq 1 \quad \Rightarrow \quad \lambda \neq \pm 1$
So, all real values of $\lambda$ except $\pm 1$.