Question:
For what value of k is the following function continuous at x = 2?
$f(x)=\left\{\begin{array}{rc}2 x+1 ; & \text { if } x<2 \\ k ; & x=2 \\ 3 x-1 ; & x>2\end{array}\right.$
Solution:
Given: $f(x)=\left\{\begin{array}{c}2 x+1, \text { if } \mathrm{x}<2 \\ k, x=2 \\ 3 x-1, x>2\end{array}\right.$
We have
$(\mathrm{LHL}$ at $x=2)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)=\lim _{h \rightarrow 0}(2(2-h)+1)=5$
(RHL at $x=2$ ) $=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0} f(2+h)=\lim _{h \rightarrow 0} 3(2+h)-1=5$
Also, $f(2)=k$
If $f(x)$ is continuous at $x=2$, then
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow 5=5=k$
Hence, for $k=5, f(x)$ is continuous at $x=2$.