Question:
For what value of $k,(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$, is a perfect square.
Solution:
The given quadric equation is $(4-k) x^{2}+(2 k+4) x+(8 k+1)=0$, and roots are real and equal
Then find the value of $k$.
Here, $a=(4-k), b=(2 k+4)$ and,$c=(8 k+1)$
As we know that $D=b^{2}-4 a c$
Putting the value of $a=(4-k), b=(2 k+4)$ and, $c=(8 k+1)$
$=(2 k+4)^{2}-4 \times(4-k) \times(8 k+1)$
$=4 k^{2}+16 k+16-4\left(4+31 k-8 k^{2}\right)$
$=4 k^{2}+16 k+16-16-124 k+32 k^{2}$
$=36 k^{2}-108 k+0$
$=36 k^{2}-108 k$
The given equation will have real and equal roots, if $D=0$
Thus,
$36 k^{2}-108 k=0$
$18 k(2 k-6)=0$
$k(2 k-6)=0$
Now factorizing of the above equation
$k(2 k-6)=0$
So, either
$k=0$
or
$(2 k-6)=0$
$2 k=6$
$k=\frac{6}{2}$
$=3$
Therefore, the value of $k=0,3$