For what value of is the function defined by
$f(x)= \begin{cases}\lambda\left(x^{2}-2 x\right), & \text { if } x \leq 0 \\ 4 x+1, & \text { if } x>0\end{cases}$
continuous at $x=0$ ? What about continuily at $x=1$ ?
The given function $f$ is $f(x)= \begin{cases}\lambda\left(x^{2}-2 x\right), & \text { if } x \leq 0 \\ 4 x+1, & \text { if } x>0\end{cases}$
If f is continuous at x = 0, then
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0^{0}} \lambda\left(x^{2}-2 x\right)=\lim _{x \rightarrow 0^{+}}(4 x+1)=\lambda\left(0^{2}-2 \times 0\right)$
$\Rightarrow \lambda\left(0^{2}-2 \times 0\right)=4 \times 0+1=0$
$\Rightarrow 0=1=0$, which is not possible
Therefore, there is no value of λ for which f is continuous at x = 0
At x = 1,
$f(1)=4 x+1=4 \times 1+1=5$
$\lim _{x \rightarrow 1}(4 x+1)=4 \times 1+1=5$
$\therefore \lim _{x \rightarrow 1} f(x)=f(1)$
Therefore, for any values of λ, f is continuous at x = 1