For two vectors A and B,

Question:

For two vectors A and B,

$|A+B|=|A-B|$ is always true when

(a) $|A|=|B| \neq 0$

(b) $A \perp B$

(c) $|A|=|B| \neq 0$ and $\mathrm{A}$ and $\mathrm{B}$ are parallel or antiparallel

(d) $|A|$ or $|B|$ is zero

 

 

Solution:

The correct answer is (b)

$A \perp B$ and (d) when either

$|A|$ or $|B|$ is zero

Leave a comment