For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
(a) there is only one solution
(b) there exists infinitely many solution
(c) there is no solution
(d) none of these
$(\mathrm{a})$ there is only one solution
The given system of equations can be written in matrix form as follows:
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$
Here,
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$
Now,
$|A|=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9\end{array}\right|$
$=1(9-15)-2(18-15)+3(10-5)$
$=-6-6+15$
$=3 \neq 0$
$\Rightarrow|A| \neq 0$
So, the given system of equations has a unique solution.