For the set $A={1,2,3}$, define a relation $R$ on the set $A$ as follows:

Question:

For the set A = {1, 2, 3}, define a relation R on the set A as follows:
R = {(1, 1), (2, 2), (3, 3), (1, 3)}
Write the ordered pairs to be added to R to make the smallest equivalence relation.

Solution:

We have,

$R=\{(1,1),(2,2),(3,3),(1,3)\}$

As, $(a, a) \in R$, for all values of $a \in A$

So, R is a reflexive relation

R can be a symmetric and transitive relation only when element (3, 1) is added

Hence, the ordered pairs to be added to R to make the smallest equivalence relation is (3, 1).

Leave a comment