For the reaction

Question:

For the reaction $2 \mathrm{~A}+3 \mathrm{~B}+\frac{3}{2} \mathrm{C} \rightarrow 3 \mathrm{P}$, which statement is correct ?

  1. $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$

  2. $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{2}{3} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$

  3. $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$

  4. $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{2}{3} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{4}{3} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$


Correct Option: , 4

Solution:

For $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}$

$\frac{-1}{\mathrm{a}} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{-1}{\mathrm{~b}} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{1}{\mathrm{c}} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}$

$\therefore \quad \frac{-1}{2} \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{-1}{3} \frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}=\frac{-2}{3} \frac{\mathrm{d}[\mathrm{C}]}{\mathrm{dt}}=\frac{1}{3} \frac{\mathrm{d}[\mathrm{p}]}{\mathrm{dt}}$

Leave a comment