For the $\beta^{+}$(positron) emission from a nucleus, there is another competing process known as electron capture (electron from an inner orbit, say, the K-shell, is captured by the nucleus and a neutrino is emitted).
$e^{+}+_{Z}^{A} X \rightarrow_{Z-1}^{A} Y+v$
Show that if $\beta^{+}$emission is energetically allowed, electron capture is necessarily allowed but not vice-versa.
Let the amount of energy released during the electron capture process be Q1. The nuclear reaction can be written as:
$e^{+}+{ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+v+Q_{1}$ ...(1)
Let the amount of energy released during the positron capture process be Q2. The nuclear reaction can be written as:
${ }_{Z}^{A} X \rightarrow{ }_{Z-1}^{A} Y+e^{+}+v+Q_{2}$ ...(2)
$m_{N}\left({ }_{Z}^{A} X\right)=$ Nuclear mass of ${ }_{Z}^{A} X$
$m_{N}\left({ }_{Z-1}^{A} Y\right)=$ Nuclear mass of ${ }_{Z-1}{ }^{A} Y$
$m\left({ }_{z}^{A} X\right)=$ Atomic mass of ${ }_{z}^{A} X$
$m\left({ }_{z-1}^{A} Y\right)=$ Atomic mass of ${ }_{z-1}^{A} Y$
me = Mass of an electron
c = Speed of light
Q-value of the electron capture reaction is given as:
$Q_{1}=\left[m_{N}\left({ }_{z}^{A} X\right)+m_{e}-m_{N}\left({ }_{z-1}^{A} Y\right)\right] c^{2}$
$=\left[m\left({ }_{z}^{A} X\right)-Z m_{e}+m_{e}-m\left({ }_{z-1}^{A} Y\right)+(Z-1) m_{e}\right] c^{2}$
$=\left[m\left({ }_{Z}^{A} X\right)-m\left({ }_{Z-1}^{A} Y\right)\right] c^{2}$ ...(3)
Q-value of the positron capture reaction is given as:
$Q_{2}=\left[m_{N}\left({ }_{z}^{A} X\right)-m_{N}\left({z_{-1}^{A}} Y\right)-m_{e}\right] c^{2}$
$=\left[m\left({ }_{z}^{A} X\right)-Z m_{e}-m\left({ }_{z-1}^{A} Y\right)+(Z-1) m_{e}-m_{e}\right] c^{2}$
$=\left[m\left({ }_{z}^{A} X\right)-m\left({ }_{z-1}{ }^{A} Y\right)-2 m_{e}\right] c^{2}$ ...(4)
It can be inferred that if Q2 > 0, then Q1 > 0; Also, if Q1> 0, it does not necessarily mean that Q2 > 0.
In other words, this means that if $\beta^{+}$emission is energetically allowed, then the electron capture process is necessarily allowed, but not vice-versa. This is because the Q-value must be positive for an energetically-allowed nuclear reaction.