For real numbers

Question:

For real numbers $\alpha$ and $\beta$, consider the following system of linear equations:

$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$

If the system has infinite solutions, then $\alpha+\beta$ is equal to

 

Solution:

For infinite solutions

$\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$

$\Delta=\left|\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & \alpha \\ 2 & -1 & 1\end{array}\right|=0$

$\Delta=\left|\begin{array}{ccc}3 & 0 & 0 \\ 1 & 2 & \alpha \\ 2 & -1 & 1\end{array}\right|=0$

$\Delta=3(2+\alpha)=0$

$\Rightarrow \alpha=-2$

$\Delta_{2}=\left|\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & -2 \\ 2 & \beta & 1\end{array}\right|=0$

$1(1+2 \beta)-2(1+4)-(\beta-2)=0$

$\beta-7=0$

$\beta=7$

$\therefore \alpha+\beta=5$ Ans.

 

Leave a comment