Question:
For non-singular square matrix $A, B$ and $C$ of the same order $\left(A B^{-1} C\right)=$
(a) $A^{-1} B C^{-1}$
(b) $C^{-1} B^{-1} A^{-1}$
(c) $C B A^{-1}$
(d) $C^{-1} B A^{-1}$
Solution:
Disclaimer: In Quesion, We are to find the inverse of $\left(A B^{-1} C\right)$. The inverse is missing in the question.
(d) $C^{-1} B A^{-1}$
We have,
$\left(A B^{-1} C\right)^{-1}=C^{-1}\left(B^{-1}\right)^{-1} A^{-1}$
$=C^{-1} B A^{-1}$