For every natural number

Question:

For every natural number $m,\left(2 m-1,2 m^{3}-2 m, 2 m^{2}-2 m+1\right)$ is a pythagorean triplet.

Solution:

False

$\because$ $(2 m-1)^{2} \neq\left(2 m^{3}-2 m\right)^{2}+\left(2 m^{2}-2 m+1\right)^{2}$

$\left(2 m^{3}-2 m\right)^{2} \neq(2 m-1)^{2}+\left(2 m^{2}-2 m+1\right)^{2}$

and $\left(2 m^{2}-2 m+1\right)^{2} \neq(2 m-1)^{2}+\left(2 m^{3}-2 m\right)^{2}$

Leave a comment