For any two sets A and B, prove the following:
(i) $A \cap\left(A^{\prime} \cup B\right)=A \cap B$
(ii) $A-(A-B)=A \cap B$
(iii) $A \cap(A \cup B)^{\prime}=\phi$
(iv) $A-B=A \Delta(A \cap B)$.
(i)
$\mathrm{LHS}=A \cap\left(A^{\prime} \cup B\right)$
$=\left(A \cap A^{\prime}\right) \cup(A \cap B)$
$=(\phi) \cup(A \cap B)$
$=A \cap B=\mathrm{RHS}$
Hence proved.
(ii)
LHS $=A-(A-B)$
$=A-\left(A \cap B^{\prime}\right)$
$=A \cap\left(A \cap B^{\prime}\right)$
$=A \cap\left(A \cap B^{\prime}\right)^{\prime}$
$=A \cap\left\{A^{\prime} \cup\left(B^{\prime}\right)^{\prime}\right\}$
$=\left(A \cap A^{\prime}\right) \cup(A \cup B)$
$=(\emptyset) \cup(A \cup B)$
$=(A \cup B)=$ RHSb
Hence proved.
(iii)
$\mathrm{LHS}=A \cap(A \cup B)$
$=A \cap\left(A^{\prime} \cap B^{\prime}\right)$
$=\left(A \cap A^{\prime}\right) \cap\left(A \cap B^{\prime}\right)$
$=(\phi) \cap\left(A \cap B^{\prime}\right)$
$=\phi=\mathrm{RHS} \quad[\phi \cap A=\phi]$
Hence proved.
(iv)
$\mathrm{LHS}=A \Delta(A \cap B)$
$=\{A-(A \cap B)\} \cup\{(A \cap B)-A\}$
$=\left\{A \cap(A \cap B)^{\prime}\right\} \cup\left\{(A \cap B) \cap A^{\prime}\right\}$
$=\left(A \cap B^{\prime}\right) \cup(\phi)$
$=\left(A \cap B^{\prime}\right)$
$=A-B=\mathrm{RHS}$
Hence proved.