For any two sets A and B, prove that
(i) $(A \cup B)-B=A-B$
(ii) $A-(A \cap B)=A-B$
(iii) $A-(A-B)=A \cap B$
(iv) $A \cup(B-A)=A \cup B$ [NCERT EXEMPLAR]
(v) $(A-B) \cup(A \cap B)=A$ [NCERT EXEMPLAR]
(i)
$(A \cup B)-B=(A \cup B) \cap B^{\prime} \quad\left(X-Y=X \cap Y^{\prime}\right)$
$=\left(A \cap B^{\prime}\right) \cup\left(B \cap B^{\prime}\right) \quad$ (Distributive law)
$=\left(A \cap B^{\prime}\right) \cup \phi$
$=A \cap B$
$=A-B$
(ii)
$A-(A \cap B)=A \cap(A \cap B)^{\prime} \quad\left(X-Y=X \cap Y^{\prime}\right)$
$=A \cap\left(A^{\prime} \cup B^{\prime}\right) \quad($ De Morgan law $)$
$=\left(A \cap A^{\prime}\right) \cup\left(A \cap B^{\prime}\right)$
$=\phi \cup\left(A \cap B^{\prime}\right)$
$=A \cap B^{\prime}$
$=A-B$
(iii)
$A-(A-B)=A-\left(A \cap B^{\prime}\right) \quad\left(X-Y=X \cap Y^{\prime}\right)$
$=A \cap\left(A \cap B^{\prime}\right)^{\prime}$
$=A \cap\left[A^{\prime} \cup\left(B^{\prime}\right)^{\prime}\right]$ (De Morgan law)
$=A \cap\left(A^{\prime} \cup B\right)$
$=\left(A \cap A^{\prime}\right) \cup(A \cap B)$ (Distributive law)
$=\phi \cup(A \cap B)$
$=A \cap B$
(iv)
$A \cup(B-A)=A \cup\left(B \cap A^{\prime}\right) \quad\left(X-Y=X \cap Y^{\prime}\right)$
$=(A \cup B) \cap\left(A \cup A^{\prime}\right) \quad$ (Distributive law)
$=(A \cup B) \cap \cup \quad(\cup$ is the universal set $)$
$=A \cup B$
(v)
$(A-B) \cup(A \cap B)=\left(A \cap B^{\prime}\right) \cup(A \cap B) \quad\left(X-Y=X \cap Y^{\prime}\right)$
$=A \cap\left(B^{\prime} \cup B\right) \quad$ (Distributive law)
$=A \cap \cup$
$=A$