For any two sets A and B,

Question:

For any two sets A and B, if n(A) =15, n(B) = 12, A ∩ B ≠ ϕ and ⊄ A, then the maximum and and minimum possible values of n(A ∆ B) are _______ and ___________ respectively.

Solution:

If n(A) =15

n(B) = 12

A ∩ B ≠ ϕ

⊄ A

Then maximum and possible values of n(A ∆ B) = ?

Since ∩ ⊆ and ∩  B

⇒ n(∩ B) ≤ n(A) and n(A ∩ B) ≤ n(B)

⇒ n(∩ ≤ min {n(A), n(B)} = 12 

⇒ –(∩ B) ≥ – 12

i.e n(∩ B) ≤ 12

also A ⊆ ⋃ B,    ⊆ ⋃ B

i.e n(A) ≤ n(A ⋃ B) and n(B) ≤ n(⋃ B)

⇒ n(A ⋃ B) ≥ max {n(A), n(B)} = 15

i.e. n(⋃ B) ≥ 15

⇒ n(A ∆ B) = n(⋃ B) – n(∩ B) ≥ 15 – 12 = 3

i.e n(A ∆ B) ≥ 3

i.e maximum value of n(A ∆ B) = 3

Leave a comment