For any two sets $A$ and $B,(A-B) \cup(B-A)=$
(a) $(A-B) \cup A$
(b) $(B-A) \cup B$
(c) $(A \cup B)-(A \cap B)$
(d) $(A \cup B) \cap(A \cap B)$.
(c) $(A \cup B)-(A \cap B)$
$(A-B) \cup(B-A)=\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)$
$=\left[A \cup\left(B \cap A^{\prime}\right)\right] \cap\left[B^{\prime} \cup\left(B \cap A^{\prime}\right)\right]$ [Using distribution law]
$=\left[(A \cup B) \cap\left(A \cup A^{\prime}\right)\right] \cap\left[\left(B^{\prime} \cup B\right) \cap\left(B^{\prime} \cup A^{\prime}\right)\right] \quad[$ Using distribution law $]$
$=[(A \cup B) \cap(U)] \cap\left[(U) \cap\left(B^{\prime} \cup A^{\prime}\right)\right] \quad\left[A \cup A^{\prime}=U=B^{\prime} \cup B\right]$
$=[A \cup B] \cap\left[B^{\prime} \cup A^{\prime}\right]$
$\left[(A \cup B) \cap(U)=(A \cup B)\right.$ and $\left.(U) \cap\left(B^{\prime} \cup A^{\prime}\right)=\left(B^{\prime} \cup A^{\prime}\right)\right]$
$=[A \cup B] \cap\left[(A \cap B)^{\prime}\right] \quad\left[(A \cap B)^{\prime}=B^{\prime} \cup A^{\prime}\right]$
$=[A \cup B] \cap[(A \cup B)-(A \cap B)]$
$=[(A \cup B)-(A \cap B)]$