Question:
For any set $A$, prove that $A \subseteq \phi \Leftrightarrow A=\phi$
Solution:
Let $A \subseteq \phi$
A is a subset of the : set , then A is also an empty set.
$\Rightarrow A=\phi$
Now, let $A=\phi$
⇒ A is an empty set.
Since, every set is a subset of itself
$\Rightarrow A \subseteq \phi$
Hence, for any set $A, A \subseteq \phi \Leftrightarrow A=\phi$