Question:
For any non-zero complex number $z, \arg (z)+\arg (\bar{z})=$ ___________________
Solution:
For complex number z
Say $z=x+i y=r e^{i \theta}$ where $r=$ modulus of $z, \theta=$ argument of $\bar{z}=x-i y$
$\Rightarrow \bar{z}=r e^{-i \theta}$
Let us arg z = θ
Since $\arg \bar{z}=-\arg z$
$\Rightarrow \arg z+\arg \bar{z}=\theta+(-\theta)$
i.e $\arg z+\arg (\bar{z})=0$