For any 2 × 2 matrix,

Question:

For any $2 \times 2$ matrix, if $A(\operatorname{adj} A)=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$, then $|A|$ is equal to

(a) 20

(c) 100

(d) 10

(d) 0

Solution:

(c) 10

$A(a d j A)=\left[\begin{array}{ll}10 & 0\end{array}\right.$

$\left.\begin{array}{ll}0 & 10\end{array}\right]$

By definition, we have

$A(\operatorname{adj} A)=|A| I=(\operatorname{adj} A) A$             (Where $I$ is the identity matrix)

$\Rightarrow|A| I=A(\operatorname{adj} A)$

$\Rightarrow|A| I=10\left[\begin{array}{ll}1 & 0\end{array}\right.$

$\left.\begin{array}{ll}0 & 1\end{array}\right]$

$\Rightarrow|A|=10$

Leave a comment