For all z C, prove that
(i) $\frac{1}{2}(z+\bar{z})=\operatorname{Re}(z)$
(ii) $\frac{1}{2}(z+\bar{z})=\operatorname{Re}(z)$
(iii) $Z \bar{Z}=|z|^{2}$
(iv) $(z+\bar{z})$ is real
(v) $(z-\bar{z})$ is 0 or imaginary.
Let z = a + ib
$\Rightarrow \bar{z}=a-i b$
Now,$\frac{z+\bar{z}}{2}=\frac{(a+i b)+(a-i b)}{2}=\frac{2 a}{2}=a=\operatorname{Re}(z)$
Hence Proved.
(ii) Let $z=a+i b$
$\Rightarrow \bar{z}=a-i b$
$w, \frac{z+\bar{z}}{2}$
$=\frac{(a+i b)+(a-i b)}{2}$
$=\frac{2 a}{2}=\frac{a}{1}=\operatorname{Re}(z)$
Hence, Proved.
(iii) Let $z=a+i b$
$\Rightarrow \bar{z}=a-i b$
Now, $z \bar{z}=(a+i b)(a-i b)=a^{2}-(i b)^{2}=a^{2}+b^{2}=|z|^{2}$
Hence Proved
(iv) Let $z=a+i b$
$\Rightarrow \bar{z}=a-i b$
Now,$z+\bar{z}=(a+i b)+(a-i b)=2 a=2 \operatorname{Re}(z)$
Hence, $^{Z}+\bar{z}$ is real.
(v) Case 1 . Let $z=a+0 i$
$\Rightarrow \bar{z}=a-0 i$
Now, $z-\bar{z}=(a+0 \mathrm{i})-(a-0 \mathrm{i})=0$
Case 2 . Let $z=0+b i$
$\Rightarrow \bar{z}=0-b i$
Now, $z-\bar{z}=(0+i b)-(0-i b)=2 i b=2 i \operatorname{Im}(z)=$ Imaginary
Case 2 . Let $z=a+i b$
$\Rightarrow \bar{z}=a-i b$
Now,$z-\bar{z}=(a+i b)-(a-i b)=2 i b=2 i \operatorname{Im}(z)=$ Imaginary
Thus, $(z-\bar{z})$ is 0 or imaginary.